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ABSTRACT

Recent research pertaining to optimum structural design with probabilistic
constraints is reviewed. The limitations and complexities introduced in the design
as a result of the transition from deterministic to probabilistic constraints are
underscored. A concise development of the theoretical aspects of optimum design of
aircraft structures subjected to random wind loads is presented and suggestions for
future research are offered. An emphasis is placed on the incorporation of recent
developments in fracture mechanics in the design constraints,

INTRODUCTION

An overwhelming majority of recent developments in optimum structural design
have dealt primarily with the minimum weight design of a statically loaded
structure. Structural design with constraints on the dynamic response
characteristics introduces an additional degree of complexity and has been the
subject of recent research. A random vibration environment necessitates a
reformulation of the optimization problem and presents significant new problems that
are the subject of this paper.

Optimum design of structural systems with random parameters and probabilistic
constraints is a physically realistic problem. Ground excitation during an
earthquake or unsteady wind shears are examples of random loads. A similar
situation exists for an airplane flying into patches of storm or nonstorm
turbulence, There are two levels of difficulty that can be identified in this

problem:

(a) A systematic description of the random loads and the choice of a
statistical process that would allow the computation of the dynamic
response parameters of interest

(b) The interpretation of these parameters for the optimum design problem
(this would include the formulation of constraints that would minimize the
conservativeness in the design but would still be computationally viable)

A considerable body of literature exists in the civil engineering discipline
that deals specifically with the description of random loads. A power spectral
density description is perhaps the most common approach to the problem wherein the
frequency spectrum of ground motion or air pressure distribution is specified.
Reference i reviews the subject in some detail. There were considerably fewer
publications pertaining to probabilistic or reliability based optimum design.
References 2-4 are indicative of attempts at optimization in a nondeterministic
environment for simplistic structural configurations.

The primary focus of the present paper is to review the state-of-art approaches
for probabilistic design in aerospace applications. Research efforts in this area
are typified by References 5-8. The deficient areas are defined and new methodology
presently under study is outlined. The numerical results obtained under this study
will be presented in a separate publication.
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AIR TURBULENCE MODELS

Measurements of various air turbulence samples indicate both a time and a
spatial variation. A rapid penetration of the gust field justifies assumption of
freezing the gust in time (ref. 9). This assumption would be invalid in rotorcraft
applications and for air vehicles that have a significant hover mode. In most
response calculations, the spatial variation of the gust field along a spanwise
direction is neglected and only a variation in the flight direction is taken into
consideration. This one-dimensional model (fig. l) needs to be reassessed for
light, high aspect ratio airplanes.

Computation of the system response in the frequency domain is more elegant than
the time domain solution and is therefore emphasized in this paper. Following this
approach a turbulence field is typically characterized by the gust velocity power
spectral density (PSD) distribution shown in figure 2.
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Figure 1.- One-dimensional turbulence model.
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Figure 2.- von Karman power spectra.
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The power spectral density function is representative of the variation of the mean
square values of the gust velocities with frequency and is established on the basis
of a stationary, isotropic, homogeneous,one-dimensional gust field characterized by
a Gaussian probability distribution. The power spectral density distribution for
the gust intensity is used in conjunction with the response admittance functions to
computethe linear response of the system to the gust loading (Figure 3). The von
Karmanspectra given by

@(_) = o2L
II

1 + 8 (1.339L_)2
T

[l + (1.339LR) 2]l]/6

provides a good fit to recorded turbulence data. Here, o is the rms turbulence

intensity and 'L' is the "scale of turbulence" which is representative of a spatial

distance over which no correlation exists in the gust intensities. Flight

measurements indicate some disagreement with the stationarity assumption. This lack

of agreement is in the higher turbulence load levels where the computed response
underestimates the actual response. This suggests a modification in the Gaussian
model for turbulence.

X

Figure 3.- Linear response analysis in the frequency domain.
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GUST RESPONSE ANALYSIS

A modal response approach is customarily preferred for the dynamic analysis of
large structural systems. A finite number of elastic modes and dominant rigid body
modes are used to model the structural deformations. In terms of the displacement
vector w, the system equations of motion are written as

(-m 2 [M] + [K] - [A]){w} = {G}

where [M] and [K] are the mass and stiffness matrices, [A] iS the matrix of loads
due to oscillation at frequency m, and {G} is the force coefficient array per unit
gust velocity. The displacements {w} can be represented approximately by the
superposition of the characteristic modes:

{w}= [,] {q}

where [@] is the matrix of 'm' normalized eigenmodes and {q} is an m-dimensional
vector of modal participation factors. The system equation is rewritten as

2
Here mm

(-m2[l] + ['-mm2] - [A]) {q} = {_}

is the m-th natural frequency and arrays [A] and {G} are defined as

[A] : [_]T [A][_]

{{_}: [,IT{G}

The above set of simultaneous algebraic equations is solved for a range of reduced
frequencies of interest. The forces and the stresses are computed in terms of the
displacements.
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THE STRUCTURAL OPTIMIZATION PROBLEM

Structural optimization problem in a stochastic environment must account for

the random variation in design parameters in addition to the random dynamic loads.

The problem formulation is stated as

Minimize

Subject to

F(a)
k

P[ U {Ri(_(a,t)) • ri} ] _ [pf]
i=1

a<t<b

Rj(a) < rj

di L < di < diU

Here F(d) is typically the structural weight, a is the vector of design variables

and _ is the time varying dynamic response. R_ is the response function with a

deterministic or random bound specified by ri,land [pf] represents the upper bound

on the probability of failure. The design variables have prescribed lower and upper
bounds.

In the event that Ri(@ (d,t)) is a stationary random process, the constraint
can be rewritten in a deterministic, time independent manner (ref. 10).

P[
k k

U {Ri(w(a,t)) • ri} ] : _ qi(_) < (pf)
i=1 i=l

a<t<b

where, for R and r both conforming to a normal distribution and exhibiting
statistical independence,

® 212duq(_)_ i f e-U
2

vL_ "r - UR/,I_r2__+ (_R

where the _'s and _'s denote the mean and rms values, respectively. The solution to

the ensuing deterministic problem can be approached by any standard nonlinear

programming strategy. While this approach may perform well for simplistic

situations involving single response quantities, gust response design poses

significant new problems. The power spectral density approach used in aircraft gust

design leads to the rms values of individual loads such as shear, bending moment and
torsion at various points within the structure. However, the statistical nature of

these loads conceals information regarding their combination characteristic (sign

and magnitude), which is very important from the standpoint of design. A constant
probability of combination criterion has been suggested to circumvent this
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problem. The normal probability distribution density function (fig. 4) for two
variables, x and y, is given as

1 exp[- 1 x-ijx 2
: 2 [CT)

p(x,y)2 OxOy 2(I  xy) x

-2Pxy (x_) y-_y y-_y 2+ 11
This equation represents ellipses in planes parallel to the x-y plane and the

infinite load combinations on the boundary of the ellipse have an equal probability
of occurrence. The shape and orientation of the ellipse depend upon the mean and

mean square values of x and y and on a quantity p_y, referred to as the correlation
coefficient. In an attempt to define a finite number of dominant load combinations,

Stauffer and Hoblitt (ref. 7) propose a technique to circumscribe the ellipse by an
octagon (fig. 5) and use the eight vertices of the octagon as critical load

combinations in the structural design. This procedure would be intractable if a

higher number of equally probable loads were to be combined.
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Figure 4.- Probability density.
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Figure 5.- Equal probability of load combination.

Gross and Sobieski (ref. 6) suggest an alternate procedure which would be applicable
to a general multivariate normal density distribution. This approach discretizes
the equal probability curve/hypersurface into a finite number of design-load-
combination conditions. In an optimization framework this would translate into a
very large number of constraints, a situation that is countered by recourse to the
"cumulative constraint" idea which permits folding these constraints into a single
representative measure.

In both these strategies the correlation coefficient Pxy plays a key role.
This quantity in defined as follows

_ i f @w(m) [Hx(m) * Hv(m) + Hv(m) * H,(m)]

Pxy ,_xAy, o real Jreal ^imag Yima g

d_

where @ (m) is the gust power spectral density; H_ and H,, are the frequency response
• W ^ 3

functlons for the load quantities x and y; Ax and A, are the ratios of the design
rms loads ox and Oy to the design rms gust intensify Ow, respectively. The value
of Pxv varies between +I and -I with ± I representing complete statistical
dependence and a value of 0 representing complete statistical independence. Since
this quantity varies with the change in the stiffness and mass distribution, it is
imperative to define approximations to this coefficient which would be
computationally less cumbersome.
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DIRECT APPROACH

The approach presently under study computes the power spectral density for a
combined stress function and constrains the rms values of this function by
prescribed bounds. Consider a combined stress constraint of the form

R(ax,ay,Txy) < Ral I

where R is a stress interaction curve and is constrained by an upper bound Ral I By
the methods of an earlier section, the generalized force vector can be written as

{F} : ([A] 2[.]){w} + {G}

The quantities and Tx are functions of the shear V, torque T, bending
aX,.a lay properties MP.moment M, and the materl

The constraint can be expressed as

R(V,T,M,MP) < Rall

Furthermore, the forces and moments can be expressed in terms of the force vector

{F} through a transfer matrix based on the structural geometry:

{V} = [TI]{F }

{M} = [T2]{F }

{T} = [T3]{F }

The admittance for the composite response function R, denoted here as HR, can
be computed over a range of frequencies of interest and the rms response valde
evaluated as

2
o R = f

0

IHR 12 @w (m) d,.

It is obvious that the procedure requires considerable numerical resources and
an important emphasis in the ongoing study would be to establish guidelines to
minimize this investment.
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RELIABILITY CONSTRAINTS IN PROBABILISTIC DESIGN

In a stochastic excitation environment, there are two logical failure criteria

of comparable significance:

(I) Single excursion failure which corresponds to an overstress in any one

cycle of loading

(2) Fatigue failure that results from a gradual degradation in the

structural strength due to cyclic loading

Johnson (ref. 11) formulates constraints for a response function x(t) that is
stationary and has a Gaussian distribution. An assumption that large values of x(t)

arrive independently leads to a Poisson probability function for the number of

times n that a large magnitude X is exceeded in time t. If Ts denotes the desired

life for the structure and Xs is the specified value that the response cannot
exceed, the constraint to guard against a single excursion failure is written as

gs,e

T

= l - s _'_ exp (- Xs2/2(_x]_ • 0
_I _X

For a fatigue failure analysis, the classical Palmgren-Miner theory provides an

estimate of the rate of fatigue damage and the constraint is formulated as

(_;_Lf b-2 b-I (___gfof : 1 _c (2)'T _x r ) • 0

Here, Lf is the desired fatigue life; _x and a. are the rms value of the response
and the response rate and b and c are constant_ obtained from an empirical relation

N(x) - c b
X

where N(x) is the number of cycles to failure at stress level x. The above formu-

lation is based on an analysis in the frequency domain and is applicable to response

functions taken one at a time or to a combined response function°
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RELIABILITY CONSTRAINTS FROMTHE FRACTURE MECHANICS STANDPOINT

Reference 12 presents a comprehensive discussion on recent advances in fracture

mechanics. Empirical relationships express the degradation in the material in terms

of fault or crack propagation rates and provide better estimates of the useful life

of the structure than the Palmgren-Miner theory. Incorporation of these ideas in

the design constraints is a principal focus of the ongoing study. Consider the

cracked specimen shown in figure 6. The differences between various cracked

components is expressed in terms of a stress intensity factor, k. This factor

describes the stress field around a crack tip and is functionally dependent on the

stress o and the crack geometry denoted by 'a'. There is a critical stress intensity

constant kc for a given material. For the crack shown in Fig. 6, this functional
relationship can be expressed in terms of the range of stress intensity factor Ak

and the range of stress variation A_:

ak = ao _a

The factor I/2 changes as the crack size increases in comparison to the

characteristic width of the specimen.

o-

Figure 6.- Cracked material specimen.
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The crack propogation rate per cycle of load is given as

d__a=
dn cAkb

where c and b are constants dependent on the material of the specimen. For a value

of b = 2 (steel) one can write an expression for the crack size after t flight hours
as

a(t) : a0 eC_A_2Not

where N^u is.the number of gust loads per flight hour; (Aa)2 is :he mean square value
of a Gausslan response function a. The Griffith Irwin equation- indicates the
residual strength in a material with crack size 'a' in terms of the critical stress

intensity constant kc:

The time to reach a critical crack size ac is obtained as*_

1 ac

- In a-otc c_A2No

At tf flight hours after tc, the crack size is

af = aceC_Aa2Notf

and the residual strength at this time is obtained as

Rf= Rc ec_A_ Notf

* Equation is valid for determinate structures only and modifications are necessary
for redundant structures.

**Note that ac generally corresponds to the material ultimate strength, Rc
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Design constraints can thus be formulated to require t c to be greater than a
specified time Tc

T
c c_A2Ngl _=I
a c o

a
o

Another constraint could be formulated that required the residual strength to be

above a certain bound (Rf/Rc • KI), Tf flight hours after the critical crack size is
reached. Such a constraint-woula be I_rescribed from a maintenance schedule:

Tf c_A_2N o • 0
g2 -l

InK1

SUMMARY

The major finding of the present survey can be outlined as follows.

(a) The frequency domain analysis provides an elegant solution strategLv to

the gust response problem. However, the lack of agreement in measured

data with assumptions such as stationarity, normality and the one-
dimensional variation in gust velocity dictate the need for

reassessing the turbulence modeling.

(b) The phase information regarding load combinations is suppressed in a

frequency domain solution. This is problematic when combined stress
constraints are prescribed in the design. Strategies to circumvent

these problems are stated.

(c) The definition of realistic constraints for the optimum design is

addressed from the standpoint of recent developments in fracture
mechanics.
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